How water equivalent are water-equivalent solid materials for output calibration of photon and electron beams?
نویسندگان
چکیده
The water equivalency of five "water-equivalent" solid phantom materials was evaluated in terms of output calibration and energy characterization over a range of energies for both photon (Co-60 to 24 MV) and electron (6-20 MeV) beams. Evaluations compared absorbed doses calculated from ionization measurements using the same dosimeter in the solid phantom materials and in natural water (H2O). Ionization measurements were taken at various calibration depths. The Radiological Physics Center's standard dosimetry system, a Farmer-type ion chamber in a water phantom, was used. Complying with the TG-21 calibration protocol, absorbed doses were calculated using eight measurement and calculational techniques for photons and five for electrons. Results of repeat measurements taken over a period of 2 1/2 years were reproducible to within a +/- 0.3% spread. Results showed that various combinations of measurement techniques and solid phantom materials caused a spread of 3%-4% in the calculation of dose relative to the dose determined from measurements in water for all beam energies on both modalities. An energy dependence of the dose ratios was observed for both photons and electrons.
منابع مشابه
Investigation of surface and buildup region doses for 6 MV high energy photon beams in the presence of a thermoplastic mask
Background: The accuracy and the reproducibility of radiotherapy can be provided by using immobilization devices such as thermoplastic masks. In head and neck cancer radiotherapy, the patients are mostly immobilized by using thermoplastic masks. In this study, the effect of the thermoplastic mask to the surface and buildup region doses was investigated by using Markus parallel plate ion chamber...
متن کاملApplication of FLUKA code to gamma-ray attenuation, energy deposition and dose calculations
Background: In radiation therapy, water is the phantom material of choice, both for reference and for relative dosimetry measurements. Solid phantoms, however, are more useful for routine measurements because they tend to be more robust and easier to set up than water phantoms. Materials and Methods: FLUKA input data cards have been arranged in sequential order. A simple cylindrical geometry wi...
متن کاملEffect of Tissue Composition on Dose Distribution in Electron Beam Radiotherapy
Objective: The aim of this study is to evaluate the effect of tissue composition on dose distribution in electron beam radiotherapy.Methods: A Siemens Primus linear accelerator and a phantom were simulated using MCNPX Monte Carlo code. In a homogeneous cylindrical phantom, six types of soft tissue and three types of tissue-equivalent materials were investigated. The tissues included muscle (ske...
متن کاملA dosimetric intercomparison of kilovoltage X-rays, megavoltage photons and electrons in the Republic of Ireland.
BACKGROUND AND PURPOSE A comprehensive dosimetry intercomparison has been carried out involving all the radiotherapy centres, all external beam modalities and every radiotherapy treatment unit in the Republic of Ireland. MATERIALS AND METHODS Reference point measurements were made for all megavoltage photon beams. Doses were also investigated in planned three-field distributions. One of these...
متن کاملPhoton dosimetry based on selective data sampling for the NaI(TL) detector
Radiation detection is essential for determining of radiation dose. Depend on the detector and dosimetry method, detection process is performed in different levels. Pulse counting is the first level of detection. Typically, the output of a radiation detector for determining value of the radiation dose cannot be used directly. Through changing the response function or the readout detector, is tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical physics
دوره 22 7 شماره
صفحات -
تاریخ انتشار 1995